
go to contents

C H A P T E R 6

TRIGGERS &
BUILT-INS

Oracle Forms applications come equipped with a significant amount
of default processing. That is, when events occur, there is always de-

fault code that responds. Quite often this default processing is not
enough to give the application the functionality your users require. The
problem is that you cannot directly access and edit the code for the de-
fault processing to make it do what you want. This is why you write trig-
gers: to complement, augment, or replace this default processing.

In this Chapter, you will delve a bit deeper into trigger and event con-
cepts. You will learn how and when triggers fire, and how they fire in re-
lation to each other. You will also write triggers of your own.

PL/SQL language, syntax and structure will not be discussed here, since it
is assumed that you have already had ample experience writing database
stored procedures, functions, and triggers.

CHAPTER OBJECTIVES

In this Chapter, you will learn about:

✔ Trigger Basics Page 172
✔ Creating Triggers of Various Types Page 187
✔ Forms Built-ins Page 213

171

Movie
Highlight

go to contents

L A B 6 . 1

TRIGGER BASICS

In the simplest terms, a trigger contains PL/SQL code that responds to
Forms events. You have already been exposed to many triggers and the
events that fire them in the previous Labs and Exercises, so you have a
general idea of how they work.

One of the advantages of using Oracle Forms and an Oracle database to-
gether is that the PL/SQL programming language is used in both of them.
So, if you have already written packages and procedures for the database,
then you already know how to write triggers in Forms. But, before you
begin writing triggers, it is necessary to understand when they fire and
how they are organized.

TRIGGER SCOPE
Triggers are always attached to other objects. The level of the object in
the Forms hierarchy helps determine the scope of the attached trigger(s).
The ON-POPULATE-DETAILS trigger in Figure 6.1 is defined at the block
level. It is attached to the COURSE block in the Object Navigator and will
only fire in response to events within the scope of the COURSE block.

Triggers can be attached to items and forms as well. Triggers at the item
level fire in response to events within the scope of their respective items.
Form-level triggers fire in response to events within the scope of the
form.

LAB OBJECTIVES

After this Lab, you will be able to:

• Use PL/SQL and SQL in Triggers
• Understand Trigger Scope
• Categorize Triggers

172 Lab 6.1: Trigger Basics

LAB
6.1

go to contents

Certain trigger types can be attached at the item level, the block level, or
the form level. You can attach a trigger at higher levels of the Forms hier-
archy to increase its scope.

� FOR EXAMPLE:
In previous Exercises, you attached WHEN-BUTTON-PRESSED triggers to
individual items. You created a button item called EXIT and attached a
trigger directly to that item which fired code to exit the form. The trig-
ger’s scope was limited to the EXIT button. That is, the trigger only fired
in response to the Button Pressed event of the EXIT item (button). It is
possible to attach a WHEN-BUTTON-PRESSED trigger at the block or form
level. What does this mean? Assume you have a CONTROL block with five
buttons and you assign a WHEN-BUTTON-PRESSED trigger at the block
level. When will the trigger fire? It will fire in response to a Button
Pressed event for any of the buttons in the block. What does this mean? It
means the scope of the trigger is now at the block level rather than only
at the item level.

CATEGORIES OF TRIGGERS
The Forms help system categorizes triggers in two ways: by name and by
functional category. Understanding the two methods of categorization
will help you understand when and why certain triggers fire, which will

Lab 6.1: Trigger Basics 173

LAB
6.1

Figure 6.1 � The ON-POPULATE-DETAILS trigger displayed in the
PL/SQL Editor.

go to contents

in turn help you decide which triggers to choose when you want to re-
spond to Forms events.

CATEGORIZING TRIGGERS BY NAME

There are five named trigger categories. The first word in a trigger’s name
will tell how it will affect Forms default processing and when it will fire
relative to Forms default processing.

The five named categories are as follows:

1) When event triggers, which augment Forms default processing.
2) On event triggers, which replace Forms default processing.
3) Pre event triggers, which fire just before a When event or an

On event.
4) Post event triggers, which fire just after a When event or On

event.
5) Key triggers, which fire when a user presses a certain key.

You would choose the appropriate trigger from one of these categories
depending on what you want your own trigger code to do and how you
want Forms to handle its own default processing.

� FOR EXAMPLE:
Assume you wanted to write some code to respond to the Commit Transac-
tions event which fires each time a form tries to insert a record. There are a
number of insert-related triggers to choose from, including ON-INSERT,
PRE-INSERT, and POST-INSERT. Do you want to replace Forms default in-
sert processing and write all of the insert logic yourself? In that case, use an
ON-INSERT trigger. Do you want to fire some of your own logic just before
Forms executes its default insert processing? In that case, you would use a
PRE-INSERT trigger. Or, you might want to use a POST-INSERT trigger to
fire just after Forms has completed its default processing.

CATEGORIZING TRIGGERS BY FUNCTION

Triggers can also be categorized by the functions to which they are re-
lated. A WHEN-BUTTON-PRESSED trigger is an Interface Event trigger be-
cause it responds to the Button Pressed event, which, as its category name
implies, is an interface event. ON-INSERT and PRE-INSERT triggers be-
long to the Transactional functional category because they are related to
transactions and respond when there are transaction-related events. The
Forms help system lists a number of functional trigger categories. In the
Exercises in this Lab, and in the rest of the Labs in this Chapter, you will
focus on the following functional categories:

174 Lab 6.1: Trigger Basics

LAB
6.1

Movie
Highlight

Movie
Highlight

go to contents

1) Query triggers, which respond to events regarding queries.
2) Validation triggers, which respond to events regarding the

validation of items and records.
3) Transactional triggers, which respond to events regarding

inserting, updating, and committing of records.
4) Key triggers, which respond to Key Press events.

Each trigger falls into both a named and a functional trigger category.

� FOR EXAMPLE:
The ON-UPDATE trigger falls into both the On event trigger named cate-
gory and the Transactional functional trigger category.

LAB 6.1 EXERCISES

6.1.1 USE PL/SQL AND SQL IN TRIGGERS

Open the form EX06_01.fmb in the Form Builder. Open the PL/SQL Editor
for the STUDENT.ZIP item’s WHEN-VALIDATE_ITEM trigger.

a) What typical PL/SQL sections and constructs can you see here?

b) Look at the SQL statement that defines the c_val_zip cursor.
How are the block and item expressed?

c) How would you write an SQL statement to select DESCRIP-
TION from the COURSE table into a DESCRIPTION display item in
a SECTION block? The DESCRIPTION value you select should cor-
respond to the COURSE_NO value that is currently in the form.

Lab 6.1: Trigger Basics 175

LAB
6.1

go to contents

Look at the STUDENT.EXIT button’s WHEN-BUTTON-PRESSED trigger.

d) Is this still PL/SQL? Why or why not?

6.1.2 UNDERSTAND TRIGGER SCOPE

Open form EX06_01.fmb in the Form Builder.

STUDENT.SALUTATION and STUDENT.ZIP both have WHEN-VALIDATE-
ITEM triggers.

a) When an item needs to be validated, which of these triggers will
fire? Will Forms simply fire both?

b) For EX06_01.fmb, at which levels within the Forms hierarchy
are there WHEN-VALIDATE-ITEM triggers?

Run the form. Type Mr. into the SALUTATION item and then press the TAB
key. Look at the status line for the Forms Runtime.

c) Which of the WHEN-VALIDATE-ITEM triggers fired? What
does this tell you about the firing order of triggers?

Keep the form running, but go to the Form Builder.

176 Lab 6.1: Trigger Basics

LAB
6.1

go to contents

d) Are there any WHEN-VALIDATE-ITEM triggers at the item level
for FIRST_NAME and LAST_NAME?

Go back to the Forms Runtime. Take the following two actions and watch the
status line after each. Type Joe into the FIRST_NAME item and press the
TAB key. Type Smith into the LAST_NAME item and press the TAB key.

e) Which trigger fired? Why do you think this happened?

Exit and close the Forms Runtime and return to the Form Builder. View the
properties for the SALUTATION item’s WHEN-VALIDATE-ITEM trigger.
Change the Execution Hierarchy property to Before. Run the form,
type Mr. in the SALUTATION item and press the TAB key. Read the alert
message, then click the OK button. Take note of the status line.

f) How has changing the Execution Hierarchy property af-
fected the form?

Select the Triggers node under the STUDENT.SALUTATION item and
click the Create button in the Object Navigator.

g) Can you create a PRE-FORM trigger here? Why not?

Lab 6.1: Trigger Basics 177

LAB
6.1

go to contents

6.1.3 CATEGORIZE TRIGGERS

You will not need to open a specific form to complete this Exercise. However,
you may want to have the Form Builder open in case you need to access the
help system.

a) What trigger would you create to replace the default delete pro-
cessing? What named category does this fall under? What functional
category does it fall under?

b) Is it mandatory that you write triggers to respond to each event?
What happens if you don’t?

In the Exercises for Lab 6.2, you will create display items called CITY and
STATE for a block based on the STUDENT table. You will also write a trigger
to populate the CITY and STATE items with values that correspond to the
value that has been fetched into the ZIP item.

c) When should the trigger you write populate these items? Before
or after the query is issued?

d) Based on your answer to Question c, what trigger should you
create? At what level should you attach it to the form? Search the
help system if you are having trouble with this question.

178 Lab 6.1: Trigger Basics

LAB
6.1

go to contents

Also in the Exercises for Lab 6.2, you will write another trigger to check that
the value a user has entered into the ZIP item is valid in that it exists in the
ZIPCODE table.

e) Which trigger should you create? What named and functional cat-
egories does this trigger belong to?

In the Exercises for Lab 6.3, you will write two triggers to set the values for
the audit columns. These triggers will assign values to CREATED_BY,
CREATED_DATE, MODIFIED_BY, and MODIFIED_DATE so that they can
be inserted or updated to the database.

f) Should these triggers fire before or after the inserts and updates
are issued?

g) Based on your answer to Question f, which triggers should you
choose and what are their functional and named categories?

LAB 6.1 EXERCISES ANSWERS

6.1.1 ANSWERS

Open the form EX06_01.fmb in the Form Builder. Open the PL/SQL Edi-
tor for the STUDENT.ZIP item’s WHEN-VALIDATE-ITEM trigger.

a) What typical PL/SQL sections and constructs can you see here?

Answer: There are Declare, Begin, and End statements, a cursor, and condi-
tional logic.

Lab 6.1: Trigger Basics 179

LAB
6.1

go to contents

The PL/SQL blocks you write in Forms triggers are identical in structure to
the code you have written for Oracle database stored procedures. The
WHEN-VALIDATE-ITEM trigger includes a DECLARE section for variables,
cursors, and so on and a BEGIN statement that is followed by executable
commands. Although there are none here, you can also include an EX-
CEPTION section in your Forms triggers for error handling.

� FOR EXAMPLE:
The WHEN-VALIDATE-ITEM could have been written a little differently, in
which case, it would have had to include an exception handler. Instead
of using a cursor, a simple SQL statement could have been used to fetch
rows from the database. Therefore, the trigger could no longer use the
cursor attribute %NOTFOUND to detect invalid records. It would have to in-
clude an exception instead. The code would look like this:

BEGIN
SELECT city, state
INTO :STUDENT.CITY, :STUDENT.STATE
FROM zipcode
WHERE zip = :STUDENT.ZIP;

EXCEPTION
WHEN NO_DATA_FOUND THEN
MESSAGE('Zipcode does not exist in Zipcode

table.');
RAISE FORM_TRIGGER_FAILURE;

END;

This trigger is using the pre-defined NO_DATA_FOUND exception to handle
instances in which no rows are returned for the SELECT…INTO statement.
You are not restricted to pre-defined exceptions, however. You can create
your own user-defined exceptions in Forms triggers just as you have in
standard PL/SQL stored procedures.

b) Look at the SQL statement that defines the c_val_zip cursor. How are the
block and item expressed?

Answer: The block and item are expressed as : STUDENT.ZIP.

Whenever you want to refer to an item and its block in an SQL statement
in a trigger, you must express the reference using the following syntax:

:block.item

180 Lab 6.1: Trigger Basics

LAB
6.1

go to contents

Note that this applies to the SELECT…INTO section of the SQL statement
as well as the WHERE clause.

c) How would you write an SQL statement to select DESCRIPTION from the
COURSE table into a DESCRIPTION display item in a SECTION block? The
DESCRIPTION value you select should correspond to the COURSE_NO value
that is currently in the form.

Answer: See description below.

SELECT description
INTO :SECTION.DESCRIPTION
FROM course
WHERE course.course_no = :SECTION.COURSE_NO.

Look at the STUDENT.EXIT button’s WHEN-BUTTON-PRESSED trigger.

d) Is this still PL/SQL? Why or why not?

Answer: Yes it is.

The EXIT_FORM statement is a Forms built-in. Even though there are no
BEGIN or END statements listed here, this is still PL/SQL. If there is noth-
ing to declare in the DECLARE statement, then it is not mandatory that
you include a BEGIN and an END statement. You can simply issue a series
of PL/SQL executable commands. The STUDENT.EXIT button’s WHEN-
BUTTON-PRESSED trigger has only one line, which is a simple call to a
Forms built-in. It is possible to have more involved PL/SQL triggers that
still do not include a BEGIN or an END statement.

6.1.2 ANSWERS

Have form EX06_01.fmb open in the Form Builder.

STUDENT.SALUTATION and STUDENT.ZIP both have WHEN-VALIDATE-
ITEM triggers.

a) When an item needs to be validated, which of these triggers will fire? Will
Forms simply fire both?

Answer: The trigger that is attached to the item that is being validated will fire.

The trigger that fires is determined by the scope of the event. The Vali-
date Item event will occur at a specific item. Therefore, only that item’s

Lab 6.1: Trigger Basics 181

LAB
6.1

go to contents

WHEN-VALIDATE item trigger will fire. This will still be true even if other
WHEN-VALIDATE-ITEM triggers are attached to other items in the form.
This same rule applies to triggers attached at the block level.

b) For EX06_01.fmb, at which levels within the Forms hierarchy are there
WHEN-VALIDATE-ITEM triggers?

Answer: There are WHEN-VALIDATE-ITEM triggers at the item, block, and form
levels.

In Question a you learned that the same trigger can exist for multiple ob-
jects at the same level (i.e., WHEN-VALIDATE-ITEM triggers for each item
in a block), but the only trigger that will fire is the one attached to the
object. It is also possible to have the same trigger at different levels in the
form. In form EX06_01.fmb, there are WHEN-VALIDATE-ITEM triggers at
the item, block, and form levels. It is possible to have some or all of these
triggers fire. You will explore how to control the firing order of triggers in
the following questions.

Run the form. Type Mr. into the SALUTATION item and then press the
TAB key. Look at the status line for the Forms Runtime.

c) Which of the WHEN-VALIDATE-ITEM triggers fired? What does this tell you
about the firing order of triggers?

Answer: The item-level WHEN-VALIDATE-ITEM has fired.

This tells you that the default firing order of triggers is determined by the
level of the object in the Forms hierarchy. The trigger that is attached to
the object at the lowest level in the hierarchy will take precedence over
triggers of the same name that are higher in the hierarchy. In this exam-
ple, the SALUTATION item’s WHEN-VALIDATE-ITEM trigger will take
precedence and fire instead of the block-and-form level WHEN-VALI-
DATE-ITEM triggers.

Keep the form running, but go to the Form Builder.

d) Are there any WHEN-VALIDATE-ITEM triggers at the item level for
FIRST_NAME and LAST_NAME?

Answer: No, there are no WHEN-VALIDATE-ITEM triggers attached to these
items.

Go back to the Forms Runtime. Take the following two actions and watch
the status line after each. Type Joe into the FIRST_NAME item and press the
TAB key. Type Smith into the LAST_NAME item and press the TAB key.

182 Lab 6.1: Trigger Basics

LAB
6.1

go to contents

e) Which trigger fired? Why do you think this happened?

Answer: The block-level WHEN-VALIDATE-ITEM trigger fired.

The block-level WHEN-VALIDATE-ITEM trigger fired in both of these cases
because there was no WHEN-VALIDATE-ITEM trigger at the item level. The
Validate Item event occurred, so Forms went searching for WHEN-VALI-
DATE-ITEM triggers. It found none at the item level, so it continued to
the block level. It found one there and fired it. This can be very useful if
there is logic that you’d like to execute for every item in the block.

Exit and close the Forms Runtime and return to the Form Builder. View
the properties for the SALUTATION item’s WHEN-VALIDATE-ITEM trigger.
Change the Execution Hierarchy property to Before. Run the form.
Type Mr. in the SALUTATION item and press the TAB key. Read the alert
message, then click the OK button. Take note of the status line.

f) How has changing the Execution Hierarchy property affected the form?

Answer: Now both the item-level and block-level WHEN-VALIDATE-ITEM triggers
have fired.

The default firing order has been changed so that the block-level trigger is
now fired as well, instead of being ignored. The item-level trigger is fired
first, then the block-level trigger. As you can tell, the Execution Hier-
archy property lets you determine the order in which like triggers at dif-
ferent levels in the Forms hierarchy should be fired. By selecting Before,
you indicated that you wanted the lowest level WHEN-VALIDATE-ITEM
trigger to fire before any WHEN-VALIDATE-ITEM triggers at higher levels.
You can imagine what would have happened if you had set Execution
Hierarchy to After.

What would happen if you were to set the block-level WHEN-VALIDATE-
ITEM’s Execution Hierarchy property to Before? When the Validate
Item event occurred for SALUTATION, all three of this forms’ WHEN-VALI-
DATE-ITEM triggers would fire in the following order: item, block, form.

Select the Triggers node under the STUDENT.SALUTATION item and
click the Create button in the Object Navigator.

g) Can you create a PRE-FORM trigger here? Why not?

Answer: No you cannot.

A PRE-FORM trigger is form-specific and therefore cannot be defined at
the item level. That is, not all trigger types can be defined at multiple lev-
els in the Forms hierarchy.

Lab 6.1: Trigger Basics 183

LAB
6.1

go to contents

6.1.3 ANSWERS

a) What trigger would you create to replace the default delete processing? What
named category does this fall under? What functional category does it fall
under?

Answer: You would create the ON-DELETE trigger. This is an On event trigger that
falls into the Transactional category.

Since the ON-DELETE trigger replaces the way Forms would normally
delete a record, it is considered a Transactional trigger.

b) Is it mandatory that you write triggers to respond to each event? What hap-
pens if you don’t?

Answer: No it is not. Forms default processing handles the event.

Form EX06_01.fmb has a number of triggers that respond to events like
Validate Item, Button Pressed, and so on. But, think back to the forms
you created in earlier Chapters. You did not write any triggers to respond
to the Validate Item events, yet the events still occurred when you
changed an item’s value and then navigated to another item. Forms
looked for triggers to respond to the events, but when it found none, it
simply executed the default processing.

c) When should the trigger you write populate these items? Before or after the
query is issued?

Answer: The trigger should populate these items after the query is issued and the re-
sults have been returned to the form.

d) Based on your answer to Question c, what trigger should you create? At what
level should you attach it to the form? Search the help system if you are having
trouble with this question.

Answer: You should create a POST-QUERY trigger and attach it at the block level.

POST-QUERY is a Post event trigger that belongs to the Query group of
triggers.

As its name implies, the POST-QUERY trigger will fire each time a record is
returned to the block. POST-QUERY triggers can be attached at the block
or form level, but not at the item level. If you attach a POST-QUERY trig-
ger to a STUDENT block, for example, it will only fire when records are
fetched to the STUDENT block. If you attach a POST-QUERY trigger at the
form level of a form that has a STUDENT and an ENROLLMENT block, it
will fire whenever a record is fetched into either block.

184 Lab 6.1: Trigger Basics

LAB
6.1

Movie
Highlight

go to contents

e) Which trigger should you create? What named and functional categories does
this trigger belong to?

Answer: You should create a WHEN-VALIDATE-ITEM trigger. This is a When
event trigger that belongs to the Validation functional category.

f) Should these triggers fire before or after the inserts and updates are issued?

Answer: These triggers should fire before the inserts and updates are issued.

g) Based on your answer to Question f, which triggers should you choose and
what are their functional and named categories?

Answer: You should choose PRE-INSERT and PRE-UPDATE triggers. These are
Pre event triggers that belong to the Transactional functional category.

LAB 6.1 SELF-REVIEW QUESTIONS

In order to test your progress, you should be able to answer the following questions:

1) What is the scope within which triggers fire?
a) ____ The object they are attached to
b) ____ The PL/SQL block
c) ____ The user’s session
d) ____ The PL/SQL Editor

2) When will a block-level WHEN-BUTTON-PRESSED trigger fire?
a) ____ In response to Button Pressed events for buttons belonging to the

block
b) ____ For every button in the form without an item-level WHEN-BUTTON-

PRESSED trigger
c) ____ For every button in the block that has a WHEN-BUTTON-PRESSED

trigger with Execution Hierarchy set to Override
d) ____ All of the above

3) Where can a WHEN-NEW-ITEM-INSTANCE trigger be defined?
a) ____ At the form level
b) ____ At the block level
c) ____ At the item level
d) ____ All of the above
e) ____ Only b & c

4) Which of the following are true about a POST-TEXT-ITEM trigger?
a) ____ It is a When event trigger
b) ____ It is a navigational trigger
c) ____ It will replace Forms default processing
d) ____ None of the above

Lab 6.1: Trigger Basics 185

LAB
6.1

go to contents

5) Which of the following is true about When event triggers?
a) ____ They augment default Forms processing
b) ____ They replace default Forms processing
c) ____ They only respond to interface events
d) ____ None of the above

6) Which of the following is true about the ON-ERROR trigger?
a) ____ It fires when you compile code that has errors
b) ____ It replaces default Forms processing
c) ____ It is created when the relation object is created
d) ____ It rolls back the form when errors occur

7) What will happen if an item-level WHEN-NEW-ITEM-INSTANCE trigger’s
Execution Hierarchy property is set to Override?
a) ____ All other WHEN-NEW-ITEM-INSTANCE triggers attached to other

items in the block will be overriden
b) ____ All other WHEN-NEW-ITEM-INSTANCE triggers at higher levels in

the Forms hierarchy will be overridden
c) ____ New items will be created in the block to override the old ones
d) ____ All of the above

8) Which of the following cannot be done with a WHEN-NEW-FORMS-
INSTANCE trigger?
a) ____ It cannot be created in the same form as a PRE-FORM trigger
b) ____ It cannot be created at the item level
c) ____ You cannot use the SET_ITEM_PROPERTY in it
d) ____ You cannot use it to set block properties

Quiz answers appear in Appendix A, Section 6.1.

186 Lab 6.1: Trigger Basics

LAB
6.1

go to contents

L A B 6 . 2

CREATING TRIGGERS
OF VARIOUS TYPES

There are hundreds of triggers in Forms, and multiple ways to use each trig-
ger. In this Lab, you will learn to write some commonly used triggers. The
code you write will be specific to the objects in the STUDENT application,
but can serve as templates for triggers you write in your own applications.

QUERY TRIGGERS
The POST-QUERY is often used to populate non-base table display items
in a block. These non-base table display items are sometimes referred to
as “lookup” items, and are used to make one or more of the base-table
items more meaningful.

� FOR EXAMPLE:
Assume you have created a block based on the SECTION table. You are
displaying all of its columns, including COURSE_NO. To make each record
more meaningful, you’d like to display the course’s description as well.
However, the DESCRIPTION column resides in the COURSE table, so you
can’t include it as a base-table item in the SECTION block. You must,

LAB OBJECTIVES

After this Lab, you will be able to:

• Create Query Triggers
• Create Validation Triggers
• Create Transactional Triggers
• Create Key Triggers

Lab 6.2: Creating Triggers of Various Types 187

LAB
6.2

go to contents

therefore, include it as a display item and populate it with a POST-QUERY
trigger. To do this, you would create a display item, name it DESCRIP-
TION (or whatever you’d like), and use a POST-QUERY trigger to fetch
records into the DESCRIPTION item.

The form would fetch a section record into the block and then fire the
POST-QUERY trigger. The trigger would then fetch the corresponding
course.description from the database and place it into the DESCRIP-
TION display item.

VALIDATION TRIGGERS
There are two Validation triggers that are commonly used in Forms:
WHEN-VALIDATE-ITEM and WHEN-VALIDATE-RECORD. Each serves to val-
idate data entered by a user. In the Exercises, you will write some simple
Validation triggers to confirm that:

1) Values entered by a user adhere to the business rules.
2) Values entered into foreign-key items exist in the parent table.

� FOR EXAMPLE:
Assume there is a business rule in the STUDENT application that states
that no class can cost more than $5,000. Whenever a user enters a value
into a COST item, you want the form to confirm that the value they’ve
entered adheres to the rule. You could do so by writing a WHEN-VALI-
DATE-ITEM trigger that contains the following code and attach it to the
COST item:

IF :SECTION.COST > 5000 THEN
MESSAGE('Course costs must be less than

$5,000.');
RAISE FORM_TRIGGER_FAILURE;

END IF;

The WHEN-VALIDATE-ITEM trigger will fire when both of the following
two conditions have been met:

1) The user has changed the value in the item.
2) The user has navigated out of the item.

If the user enters a value greater than 5000 and navigates out of the item,
the Validate Item event will occur and the WHEN-VALIDATE-ITEM trigger

188 Lab 6.2: Creating Triggers of Various Types

LAB
6.2

go to contents

will fire. Since validation has failed, the user will receive a message and
processing will stop.

Validation triggers can also be used to check that values entered into
foreign-key items exist in the parent table.

� FOR EXAMPLE:
Assume you have a form based on the ENROLLMENT table. You want the ap-
plication to confirm that the value entered for SECTION_ID exists in the
SECTION table. If it doesn’t, the INSERT or UPDATE statement will be re-
jected by the database. If the database is going to reject it anyway, which is
essentially validation, then why repeat the code in the application? For one
thing, it makes the application a bit more user-friendly. The user will be
alerted to his mistake immediately rather than later at the time of the in-
sert. It also makes it easier to process the error. You respond to and handle
validation item-by-item rather than by trying to process the error message
returned by the database, which might not always be meaningful.

TRANSACTIONAL TRIGGERS
There are a number of Transactional triggers used to augment or replace
Forms default transaction processing. The ON-POPULATE-DETAILS and ON-
CHECK-DELETE-MASTERmaster-detail triggers are considered Transactional
triggers. PRE-CHANGE, POST-FORMS-COMMIT, POST-DATABASE-COMMIT,
and many other transaction-related triggers allow you to write your own
processing logic in and around Forms-level and database-level transactions.
In this Lab, you will experiment with two: the PRE-INSERT and PRE-
UPDATE triggers. You will use these to set values for the audit columns.

KEY TRIGGERS
Key triggers fire whenever a user presses a corresponding key on the key-
board. If a user presses the down arrow, or the down key, then the KEY-
DOWN trigger will fire. Key triggers can be used if you want to change or
replace default key processing.

LAB 6.2 EXERCISES

6.2.1 CREATE QUERY TRIGGERS

Use the wizards to quickly create a form based on the STUDENT table.
Enforce data integrity on the wizard’s table page should be
unchecked. Include the audit columns in the block, but do not display them

Lab 6.2: Creating Triggers of Various Types 189

LAB
6.2

go to contents

on the canvas. Lay the items out in Form style. Create two display items in the
STUDENT block and name them CITY and STATE. Position them after
STUDENT.ZIP in the block and just to the right of STUDENT.ZIP on the
canvas. Size and align them so that they are arranged neatly, but do not be
overly concerned with the look of the form.

Use the code below to answer Questions a–d.

DECLARE
CURSOR c_city_state IS SELECT city, state

FROM zipcode
WHERE zip = :STUDENT.ZIP;

BEGIN
OPEN c_city_state;
FETCH c_city_state INTO :STUDENT.CITY,

:STUDENT.STATE;
CLOSE c_city_state;

END;

a) What two database columns is this trigger querying?

b) How will the POST-QUERY trigger know which record to fetch
from the database?

c) Which items are being populated? Which line of code populates
these items?

d) Which object should you attach the POST-QUERY trigger to?

190 Lab 6.2: Creating Triggers of Various Types

LAB
6.2

go to contents

Create a POST-QUERY trigger and attach it to the object that was your an-
swer for Question d. Type the code above into the PL/SQL Editor and click
the Compile button.

e) Were there any errors?

When the POST-QUERY trigger compiles correctly, run the form and issue a
query.

f) Were the CITY and STATE items populated?

If not, look at the Forms Runtime’s status line for error messages. Select Help |
Display Errors from the Forms Runtime’s Main Menu to see more details.

g) What was the error? Why did this happen? What should you do
to the display items to correct this?

Exit the form and fix the mistake. Run the form again and issue a query to test
the POST-QUERY trigger.

h) Did it populate CITY and STATE this time? What happens when
you scroll from record to record?

i) If you were to create a new form based on the ENROLLMENT
table, what are some display items you could create and populate
with a POST-QUERY trigger?

Lab 6.2: Creating Triggers of Various Types 191

LAB
6.2

go to contents

j) What would the code for the trigger be?

Save the form as R_POSTQ_VAL.fmb.

6.2.2 CREATE VALIDATION TRIGGERS

In the following Exercise questions, you will write a Validation trigger for
STUDENT.ZIP in the R_POST_VAL.fmb form. The trigger will validate that
the ZIP value a user wishes to insert or update exists in the Zipcode table.
Use the code below to answer Questions a–e.

DECLARE
v_invalid BOOLEAN;
CURSOR c_val_zip IS SELECT city, state
FROM zipcode
WHERE zip = :STUDENT.ZIP;

BEGIN
OPEN c_val_zip;
FETCH c_val_zip INTO :STUDENT.CITY, :STUDENT.STATE;
v_invalid := c_val_zip%NOTFOUND;
IF v_invalid THEN

MESSAGE('This zipcode is invalid. Re-enter
another.');

RAISE FORM_TRIGGER_FAILURE;
END IF;

END;

a) What variable are you declaring to help check the validity of the
ZIPCODE value? What is its data type?

192 Lab 6.2: Creating Triggers of Various Types

LAB
6.2

go to contents

b) Which line of code assigns a value to this variable? What cursor
attribute are you using to assign the value?

c) What will be the value of the v_invalid variable if the cursor
fails to fetch a row? What will this mean about the value the user has
entered?

d) What two commands will the trigger issue if the value is invalid?

e) Why is the trigger fetching values into the CITY and STATE
columns if the purpose is to validate the ZIP item? Won’t the
columns be populated by the POST-QUERY trigger?

Create a WHEN-VALIDATE-ITEM trigger for the STUDENT.ZIP item and
enter the code above. Compile the trigger. Run the form and issue a query.
Change the value in the ZIP item to 123 and press the TAB key.

f) Has the WHEN-VALIDATE-ITEM trigger fired? What two things
about the form’s behavior indicate that it has?

g) What Forms object could you attach to this item to help the user
choose a valid Zip Code?

Lab 6.2: Creating Triggers of Various Types 193

LAB
6.2

go to contents

Save the changes to form R_POSTQ_VAL.fmb.

Use the wizards to quickly create a form based on the SECTION table. En-
force data integrity on the wizard’s table page should be unchecked.
Include the audit columns in the block, but do not display them on the canvas. Lay
the items out in Form style.

Assume that there is a building called L5 on the STUDENT campus. The rooms
in this building can only seat 15 students or less. In the SECTION table’s LO-
CATION column, all of the rooms in the L5 building are named L501, L502,
and so on. When users are inserting or updating section records, you want to
prevent them from making the CAPACITY greater than 15 for any room in
the L5 building.

h) Could you write a Validation trigger to enforce this rule? What
would the code be? Write your answer on paper first. The trig-
ger code should not be overcomplicated. You should be able to do it
in three simple statements.

i) If you use a WHEN-VALIDATE-ITEM trigger, which item could
the trigger code be attached to? Do not create the trigger, simply
write down your answer.

j) If your answer to Question i was CAPACITY, when will the
WHEN-VALIDATE-ITEM trigger fire?

k) If the user inserted a new row, what would happen if the user set
CAPACITY to 25 first and then set LOCATION to L501? Would
the validation take place? Why not?

194 Lab 6.2: Creating Triggers of Various Types

LAB
6.2

go to contents

l) Which Validation trigger could you create to make sure that the
trigger fires for each record? Which object should you attach it to?
Create the trigger, enter the code, and test the form.

You do not need to save this form as you will not need it in future Exer-
cises.

6.2.3 CREATE TRANSACTIONAL TRIGGERS

Use the wizards to quickly create a form based on the COURSE table. Leave
Enforce data integrity unchecked. Include the audit columns in the
block and on the canvas. Normally you would not include the audit columns
on the canvas. You are doing it here so you can see the outcome of the trigger
code. Give the canvas a Form-style layout and set the audit columns to be dis-
play items.

Set the COURSE_NO initial value property to:

:SEQUENCE.COURSE_NO_SEQ.NEXTVAL

In this Exercise, you will write Transactional triggers to set the values for the
audit columns.

a) Why do you have to write a trigger to set these values? Why not
make the user input these values?

b) Should this trigger be assigned to the form or block level?

Lab 6.2: Creating Triggers of Various Types 195

LAB
6.2

go to contents

c) What two pieces of information will you need to get from the
system to assign values for the audit columns?

The code for the PRE-INSERT trigger will be as follows:

DECLARE
v_block VARCHAR2(30);
v_username VARCHAR2(30);
v_date DATE;

BEGIN
v_username := GET_APPLICATION_PROPERTY(USERNAME);
v_date := SYSDATE;
v_block := :SYSTEM.CURSOR_BLOCK;

COPY(v_date, v_block||'.CREATED_DATE');
COPY(v_username, v_block||'.CREATED_BY');
COPY(v_date, v_block||'.MODIFIED_DATE');
COPY(v_username, v_block||'.MODIFIED_BY');

END;

d) Which built-in is being used to get the user’s name?

e) How is the value of v_block assigned?

f) What parameters are being passed to the COPY built-in?

Create the PRE-INSERT trigger at the form level and enter the code above.
Run the form and try to insert a new record.

196 Lab 6.2: Creating Triggers of Various Types

LAB
6.2

go to contents

g) Did the trigger work? How do you know?

h) What trigger should you create to set MODIFIED_BY and MOD-
IFIED_DATE every time a record is changed?

i) What will the code be for this trigger?

j) Could you reuse these triggers exactly as they are for forms with
SECTION blocks? STUDENT blocks? Any block?

Save this form as R_TRANS.fmb.

6.2.4 CREATE KEY TRIGGERS

In this Exercise, you will create a simple Key trigger for response when the
user clicks the Execute Query button on the keyboard.

You will also explore a Key trigger that is written by the Form Builder when
you select Enforce data integrity in the Data Block Wizard. This
KEY-DELREC trigger is written whenever primary-foreign key constraints
exist in the database that correspond to one of the items in the block.

Open EX06_02.fmb in the Form Builder. Use the Object Navigator to cre-
ate a form-level KEY-EXEQRY trigger. Add the following statement to the
trigger:

Lab 6.2: Creating Triggers of Various Types 197

LAB
6.2

go to contents

MESSAGE('You have pressed the F8 key to execute a query');

Run the form and press the F8 key on the keyboard to test the trigger. Exit the
form after you have tested the trigger to return to the Form Builder.

a) Did the Key trigger respond when the key was pressed? Why
didn’t the form execute a query?

Add the EXECUTE_QUERY statement to the end of the KEY-EXEQRY trig-
ger. The trigger should now be as follows:

MESSAGE('You have pressed the F8 key to execute a query');
EXECUTE_QUERY;

Create a WHEN-BUTTON-PRESSED trigger for the ZIPCODE.EXECUTE_
QUERY button. Add the following statement:

EXECUTE_QUERY;

Run the form and press the F8 key on the keyboard to confirm that the query
has been executed. Now click the Execute Query button.

b) Was the message text issued along with the query? Why not?

Change the code in the WHEN-BUTTON-PRESSED trigger to the following:

DO_KEY('EXECUTE_QUERY');

Run the form and test the Execute Query button.

c) What function did the DO_KEY built-in provide?

Study the code for the ZIPCODE block’s KEY-DELREC trigger.

LAB
6.2

198 Lab 6.2: Creating Triggers of Various Types

go to contents

Lab 6.2: Creating Triggers of Various Types 199

LAB
6.2

d) What function will this trigger perform?

Run the form. Click the Enter Query button on the toolbar to put the
form into Enter_Query mode. Issue a query for the Zip Code 06605. Click
the Remove Record button on the toolbar.

e) Did the KEY-DELREC trigger fire? What built-in must the trigger as-
sociated with the Remove Record button use to make this happen?

LAB 6.2 ANSWERS

6.2.1 ANSWERS

a) What two database columns is this trigger querying?

Answer: It is querying the CITY and STATE columns in the ZIPCODE table.

The cursor c_city_state defines the query, which will fetch the values
to populate the display items CITY and STATE. In this case, the SQL state-
ment is rather simple. It is merely selecting two columns from the same
table. Statements can be much more complicated in that they can in-
clude more columns, joins, complicated WHERE clauses, and so on.

b) How will the POST-QUERY trigger know which record to fetch from the data-
base?

Answer: The WHERE clause indicates that the ZIP in the ZIPCODE table should
correspond with the ZIP item in the STUDENT block.

Note that the item is expressed as: block.item, which is the same syn-
tax you learned in Lab 6.1.

c) Which items are being populated? Which line of code populates these items?

Answer: The CITY and STATE items in the STUDENT block are being populated.
They are populated with the following line of code:

FETCH c_city_state INTO :STUDENT.CITY, :STUDENT.STATE;

go to contents

LAB
6.2

The cursor fetches the records directly into the items CITY and STATE.
Instead of using a cursor, the POST-QUERY trigger can also be written
using a SELECT...INTO statement like the following:

SELECT city, state
INTO :STUDENT.CITY, :STUDENT.STATE
FROM zipcode
WHERE zipcode = :STUDENT.ZIP;

d) Which object should you attach the POST-QUERY trigger to?

Answer: You should attach the POST-QUERY trigger to the STUDENT block.

In this case, the POST-QUERY trigger applies only to the STUDENT block,
so it should be attached to the STUDENT block. It is possible to attach
POST-QUERY triggers at the form level, but that only makes sense if you
want the trigger to apply to all of the blocks in the form.

e) Were there any errors?

If there were some errors, perhaps you made a small typo. Compare your
code with that in Figure 6.2. Also, take a moment to study the buttons in
the PL/SQL Editor.

200 Lab 6.2: Creating Triggers of Various Types

Figure 6.2 � The PL/SQL Editor showing a successfully compiled
POST-QUERY trigger.

go to contents

LAB
6.2

You have already worked with the PL/SQL Editor in previous Chapters,
and have probably found that it is a rather simple, yet handy, tool for
writing code. Now that your triggers are becoming more complicated, it
is worth a bit more exploration.

THE PL/SQL EDITOR

Refer to Figure 6.2. The buttons across the top of the PL/SQL Editor’s win-
dow are self-explanatory and do not require discussion. Just below the
buttons are three list items: Type, Object, and one with no label. As you
can see, these indicate the type of PL/SQL object that you are creating,
along with the object to which you are attaching it. In this case, you are
working with a trigger that is attached to the STUDENT block at the block
level. The Name list item below indicates which trigger you are working
with.

The PL/SQL Editor can also help you debug your code.

� FOR EXAMPLE:
If there had been a mistake in your code, the PL/SQL Editor may have
looked like Figure 6.3.

Note that the gray area below the trigger code lists error messages. In this
case, the ZIPCODE table was misspelled, so the Form Builder could not
find it in the database.

Lab 6.2: Creating Triggers of Various Types 201

Figure 6.3 � The PL/SQL Editor showing errors in a trigger.

go to contents

You will use the PL/SQL Editor in this Chapter to write triggers and also
in later Chapters to write PL/SQL program units.

When the POST-QUERY trigger compiles correctly, run the form and issue
a query.

f) Were the CITY and STATE items populated?

Answer: No they were not.

g) What was the error? Why did this happen? What should you do to the display
items to correct this?

Answer: The error was FRM-40505 Unable to Perform Query.

If you looked at the Show Errorswindow, you would have been able to see
the error in the SELECT statement. CITY and STATE are not base-table items
in this block and should not be included in the query. They are non-base-
table items, so their Database Item properties should have been set to No.

It is important to remember that, although CITY and STATE are being
populated by values from the database, they are not base-table items in
this block.

Run the form and issue a query to test the POST-QUERY trigger.

h) Did it populate CITY and STATE this time? What happens when you scroll
from record to record?

Answer: Yes, the CITY and STATE values change to correspond with the value in
the ZIP item.

i) If you were to create a new form based on the ENROLLMENT table, what are
some display items you could create and populate with a POST-QUERY trigger?

Answer: You could create display items to show the student’s LAST_NAME and
FIRST_NAME and perhaps the COURSE_NO.

In these examples, you are using the POST-QUERY trigger to provide
lookup values to make the form data more meaningful to the user. In the
STUDENT form created above, the ZIP item was much more meaningful
to the user when the CITY and STATE values were supplied along with it.

In the case of a form based on the ENROLLMENT table, what values from
other tables might make the enrollment information more meaningful?
The LAST_NAME and FIRST_NAME would make STUDENT_ID more mean-
ingful. And perhaps the COURSE_NO would make the SECTION_ID more

LAB
6.2

202 Lab 6.2: Creating Triggers of Various Types

go to contents

meaningful. You could include even more, like the DESCRIPTION of the
course, the INSTRUCTOR_ID, and so on. In the following question, write
a trigger that would populate LAST_NAME, FIRST_NAME, and COURSE_NO.

j) What would the code for the trigger be?

Answer: See below.

DECLARE
CURSOR c_student_name is

SELECT first_name, last_name
FROM student
WHERE student_id =

:ENROLLMENT.STUDENT_ID;
CURSOR c_course_no is

SELECT course_no
FROM section
WHERE section_id =

:ENROLLMENT.SECTION_ID;
BEGIN

OPEN c_student_name;
FETCH c_student_name INTO :ENROLLMENT.LAST_NAME,

:ENROLLMENT.FIRST_NAME;
CLOSE c_student_name;
OPEN c_course_no;
FETCH c_course_no INTO :ENROLLMENT.COURSE_NO;
CLOSE c_course_no;

END;

Note that, in this case, the trigger had more than one cursor.

Save the form as R_POSTQ_VAL.fmb.

6.2.2 ANSWERS

a) What variable are you declaring to help check the validity of the ZIPCODE
value? What is its data type?

Answer: The variable is v_invalid and its data type is Boolean.

b) Which line of code assigns a value to this variable? What cursor attribute are
you using to assign the value?

Answer: See below.

LAB
6.2

Lab 6.2: Creating Triggers of Various Types 203

go to contents

The line of code is:

V_invalid := c_val_zip%NOTFOUND;

The cursor attribute is %NOTFOUND. As you know from your experience
with PL/SQL, %NOTFOUND evaluates to TRUE if a cursor does not fetch a
record from the database; it evaluates to FALSE if the cursor successfully
fetches a record.

Here is where the actual validation in the WHEN-VALIDATE-ITEM trigger
occurs. The cursor opens and begins trying to fetch rows. If it is unable to
fetch a row that matches the criteria in the WHERE clause, it sets the
%NOTFOUND attribute to TRUE.

c) What will be the value of the v_invalid variable if the cursor fails to fetch a
row? What will this mean about the value the user has entered?

Answer: The value of v_invalid will be TRUE.

d) What two commands will the trigger issue if the value is invalid?

Answer: The trigger will issue a message to the user and RAISE FORM_TRIG-
GER_FAILURE.

FORM_TRIGGER FAILURE is a pre-defined, built-in Forms exception. It is
used to halt Forms processing when an error has occurred. In this case,
the user has entered an invalid value in the ZIP item. After receiving the
message, the FORM_TRIGGER_FAILURE built-in exception will not allow
the user to continue until they enter a valid Zip Code.

FORM_TRIGGER_FAILURE is not limited to WHEN-VALIDATE-ITEM trig-
gers. It can be used in any Forms PL/SQL object. However, it cannot be
used in PL/SQL objects that are stored in the database.

e) Why is the trigger fetching values into the CITY and STATE columns if the
purpose is to validate the ZIP item? Won’t the columns be populated by the
POST-QUERY trigger?

Answer: See discussion below.

By fetching CITY and STATE into the form as you validate ZIP, you are
killing two birds with one stone. As the user creates new records or edits
existing ones, you will want to validate the ZIP value. You also want the
CITY and STATE display items to change so that they correspond to the
new ZIP value. The POST-QUERY trigger will not fire to populate these

LAB
6.2

204 Lab 6.2: Creating Triggers of Various Types

go to contents

items while the user is editing items and tabbing around the form be-
cause there has not been a query.

f) Has the WHEN-VALIDATE-ITEM trigger fired? What two things about the
form’s behavior indicate that it has?

Answer: The message appeared on the hint line, and it is not possible to navigate from
the ZIP item.

g) What Forms object could you attach to this item to help the user choose a
valid Zip Code?

Answer: An LOV.

If the user is having trouble entering valid values, it might be helpful to
provide an LOV for them to select from.

h) Could you write a Validation trigger to enforce this rule? What would the code
be? The trigger code should not be overcomplicated. You should be able to do
it in three simple statements.

Answer: See the code below.

IF :SECTION.LOCATION LIKE 'L5%'
AND :SECTION.CAPACITY > 15
THEN MESSAGE('Capacity must be less than 15 for

sections in the L5 building.');
RAISE FORM_TRIGGER_FAILURE;

END IF;

Note that the trigger will check two of the items in the form and if both
conditions are met, it will issue a message to the user and RAISE
FORM_TRIGGER_FAILURE to halt processing.

i) If you use a WHEN-VALIDATE-ITEM trigger, which item should the trigger
code be attached to?

Answer: It could be attached to the CAPACITY or LOCATION item.

j) If your answer to Question i was CAPACITY, when will the WHEN-VALI-
DATE-ITEM trigger fire?

Answer: It will fire after you change the CAPACITY value and then navigate out of
the item.

LAB
6.2

Lab 6.2: Creating Triggers of Various Types 205

go to contents

k) If the user inserted a new row, what would happen if the user set CAPACITY
to 25 first and then set LOCATION to L501? Would the validation take place?
Why not?

Answer: No.

Because the trigger is attached to the CAPACITY column, it will fire only
after the user has changed CAPACITY and navigated out of it. It will not
fire when the user changes and navigates out of LOCATION. Therefore, if
the user changes the CAPACITY item first, then changes the LOCATION
item second, the trigger will not fire. This goes back to trigger scope; a
trigger will fire only within its scope, which in this case is within the vali-
dation of CAPACITY.

So, what could you do? You could copy the trigger and attach it to both
items, but that would not be very elegant. You could put the WHEN-VAL-
IDATE-ITEM trigger at the block level, but then it would fire for every
item, which would be inelegant and inefficient. Or, you could put a dif-
ferent trigger at the block level. Read the next question for more details
on what you could do.

l) Which Validation trigger could you create to make sure that the trigger fires
for each record? Which object should you attach it to? Create the trigger,
enter the code, and test the form.

Answer: You could create a WHEN-VALIDATE-RECORD trigger and attach it to
the block.

The WHEN-VALIDATE-RECORD trigger will fire once for the entire record
when the Validate Record event occurs. So, no matter what order a user
enters or changes the values in the block, the WHEN-VALIDATE-RECORD
trigger will fire and catch any invalid values.

6.2.3 ANSWERS

a) Why do you have to write a trigger to set these values? Why not make the
user input these values?

Answer: These are audit columns and should be maintained by the system.

The purpose of these columns is to keep a strict record of when, and by
whom, each record was updated or changed. If the audit trail is being
kept for security reasons, as well as for record-keeping reasons, then it
does not make sense to allow the user to edit the values.

LAB
6.2

206 Lab 6.2: Creating Triggers of Various Types

go to contents

The most secure method would be to populate these columns with data-
base triggers. But, for the purpose of these Exercises, you will have the
form populate them.

b) Should this trigger be assigned to the form or block level?

Answer: PRE-INSERT triggers can be set at either the form or block level.

The code you will write in this Exercise will be block-independent. That
is, the block names will not be hard-coded into the trigger so that they
can apply to any base-table block in the form. Therefore, if you put the
triggers at the form level, their scope will be for all base-table blocks.

In this application, all of the base-table blocks will contain the audit
items.

c) What two pieces of information will you need to get from the system to assign
values for the audit columns?

Answer: You will need to get the user’s name and the date.

d) Which built-in is being used to get the user’s name?

Answer: The GET_APPLICATION_PROPERTY built-in.

e) How is the value of v_block assigned?

Answer: v_block is assigned using the :SYSTEM.CURSOR_BLOCK system vari-
able.

System variables hold internal information about the form. SYSTEM
.CURSOR_BLOCK holds the value of the current navigation block. There
are many other system variables that you can reference to get all sorts of
internal information like the name of the current item, if the form is in
Enter Query mode or Normal mode, the current position of the mouse,
and so on.

In this case, you want to get the name of the current block so that you
can set the values for the audit items appropriately.

f) What parameters are being passed to the COPY built-in?

Answer: A value and a block.item name.

The COPY built-in takes a value and copies it somewhere else. Here, you
are copying the value in the variable into one of the audit items. You
could also use the COPY built-in to copy the value in one variable into an-
other variable.

LAB
6.2

Lab 6.2: Creating Triggers of Various Types 207

go to contents

The value for each of the audit items could have been set without the
COPY built-in using the following syntax:

:COURSE.CREATED_BY := v_username;

While this method would work, it is not block-independent since you
had to hard-code the block name into the statement.

g) Did the trigger work? How do you know?

Answer: Yes, a Transaction complete one record applied and
saved message appeared in the hint line.

Also note that the values appeared in the items in the form. This, how-
ever, is not an indication that the insert succeeded in the database. This
merely indicates that the values were successfully populated in the items.
The PRE-INSERT trigger fires before an insert. The code you have written
in the PRE-INSERT only assigns values to items in the form; it does noth-
ing to make sure that those values are inserted to the database. Once the
PRE-INSERT trigger has completed, Forms continues with its default in-
sert processing. Forms writes an INSERT statement that includes every
data item in the block and sends it off to the database.

h) What trigger should you create to set MODIFIED_BY and MODIFIED_DATE
every time a record is changed?

Answer: You should use a PRE-UPDATE trigger.

i) What will the code be for this trigger?

Answer: See the code below.

DECLARE
v_block VARCHAR2(30);
v_username VARCHAR2(30);
v_date DATE;

BEGIN
v_username := GET_APPLICATION_PROPERTY(USERNAME);
v_date := SYSDATE;
v_block := :SYSTEM.CURSOR_BLOCK;
COPY(v_date, v_block||'.MODIFIED_DATE');
COPY(v_username, v_block||'.MODIFIED_BY');

END;

LAB
6.2

208 Lab 6.2: Creating Triggers of Various Types

go to contents

Note that the only difference is that the CREATED_BY and CREATED_DATE
items are not being populated here.

j) Could you reuse these triggers exactly as they are for forms with SECTION
blocks? STUDENT blocks? Any block?

Answer: Yes you could.

Since you didn’t hard-code the block names into the triggers, you have
made them portable across forms.

Save this form as R_TRANS.fmb.

6.2.4 ANSWERS

a) Did the Key trigger respond when the key was pressed? Why didn’t the form
execute a query?

Answer: Yes, the trigger responded.

The MESSAGE statement that was written to the trigger was successfully
executed. However, the form didn’t execute a query. Key triggers, like On
triggers, replace Forms default processing, so the original default process-
ing will not occur. To augment the default processing of a keystroke, you
must remember to manually enter the necessary code.

� FOR EXAMPLE:
For the KEY-EXEQRY trigger to reproduce the default processing, the code
must be as follows:

MESSAGE('You have pressed the F8 key to execute a query');
EXECUTE_QUERY;

b) Was the message text issued along with the query? Why not?

Answer: No it was not.

The WHEN-BUTTON-PRESSED trigger is not aware of the code that is in the
KEY-EXEQRY trigger, so of course it will not fire the MESSAGE statement.
The problem here is that the application will behave differently if the
user executes a query by pressing the F8 key on the keyboard, or if they
click the Execute Query button on the screen. In almost all cases, you

LAB
6.2

Lab 6.2: Creating Triggers of Various Types 209

go to contents

will want the behavior to be the same no matter how the user chooses to
issue a query. This is not only true for executing queries, but for all in-
stances when you decide to use Key triggers. Question c will help you
find a solution to this problem.

Change the code in the WHEN-BUTTON-PRESSED trigger to the following:

DO_KEY('EXECUTE_QUERY');

Run the form and test the Execute Query button.

c) What function did the DO_KEY built-in provide?

Answer: The DO_KEY built-in fired the KEY-EXEQRY trigger.

When executed, DO_KEY fires the Key trigger associated with the built-in
it has accepted as its parameter.

� FOR EXAMPLE:
If you issue the statement

DO_KEY('COMMIT_FORM');

the KEY-COMMIT trigger will fire.

If you issue the statement

DO_KEY('ENTER_QUERY');

the KEY-ENTQRY trigger will fire.

Study the code for the ZIPCODE block’s KEY-DELREC trigger.

d) What function will this trigger perform?

Answer: See the discussion below.

The form will prevent the current record from being marked for deletion
if that record has child records in another table.

Run the form. Click the Enter Query button on the toolbar to put the
form into Enter Query mode. Issue a query for the Zip Code 06605. Click
the Remove Record button on the toolbar.

LAB
6.2

210 Lab 6.2: Creating Triggers of Various Types

go to contents

e) Did the KEY-DELREC trigger fire? What built-in must the trigger associated
with the Remove Record button use to make this happen?

Answer: Yes, the DO_KEY built-in was used.

This example illustrates the usefulness of the DO_KEY built-in. The default
processing for the deletion of a record has been overwritten and replaced
with a KEY-DELREC trigger. By using the DO_KEY built-in behind the toolbar
buttons, the application is ensuring that any Key trigger logic will be fired.

You will use the DO_KEY built-in again when you create your own toolbar
in Chapter 8, “Canvases and Windows.”

LAB 6.2 SELF-REVIEW QUESTIONS

In order to test your progress, you should be able to answer the following questions:

1) Which of the following is true about POST-QUERY triggers?
a) ____ They are not valid at the form level
b) ____ They fire after a record has been fetched
c) ____ You can attach them to record groups
d) ____ a & b

2) Where could you attach a POST-QUERY trigger if you want it to populate a
display item named STUDENT.LAST_NAME?
a) ____ To the primary key item in the block
b) ____ To the STUDENT block
c) ____ To the LAST_NAME item
d) ____ To any item in the form that will be queried

3) Which of the following is true about the PL/SQL Editor?
a) ____ You can use it to write triggers and program units
b) ____ It will check the syntax of your code
c) ____ It will indent your code automatically
d) ____ All of the above

4) When does the WHEN-VALIDATE-ITEM trigger fire?
a) ____ In response to a Validate Item event
b) ____ When an item is not valid
c) ____ When the user navigates out of an item and that item’s value has been

changed
d) ____ a & c

LAB
6.2

Lab 6.2: Creating Triggers of Various Types 211

go to contents

LAB
6.2

5) Which trigger should you use to validate an entire record?
a) ____ POST-VALIDATE-RECORD
b) ____ WHEN-VALIDATE-RECORD
c) ____ WHEN-NEW-RECORD-INSTANCE
d) ____ a & b

6) What is FORM_TRIGGER_FAILURE?
a) ____ A built-in to respond to the failure of an event
b) ____ A built-in you can use to crash the operating system
c) ____ A built-in exception to help you handle errors
d) ____ An event you can respond to with the ON-ERROR trigger

Quiz answers appear in Appendix A, Section 6.2.

212 Lab 6.2: Creating Triggers of Various Types

go to contents

L A B 6 . 3

FORMS BUILT-INS

The Forms built-ins are a set of PL/SQL functions and procedures that
perform standard application functions. You have already used built-ins
like EXIT_FORM and COMMIT_FORM in previous Labs.

In these cases, you simply typed the built-in’s name, and in doing so, ac-
cepted its default functionality. But, like the PL/SQL functions and proce-
dures you have written yourself, most built-ins can accept parameters.
The parameters you pass a built-in will affect its behavior.

� FOR EXAMPLE:
When you used the EXIT_FORM built-in, you didn’t pass it any parame-
ters. The code looked like this:

EXIT_FORM;

However, the EXIT_FORM built-in can also accept parameters that affect
what the form does when it exits. It might look like this:

EXIT_FORM('DO_COMMIT');

By passing EXIT_FORM the DO_COMMIT parameter, you are telling the
form to validate and commit any outstanding changes in the form as well
as exit the form.

LAB OBJECTIVES

After this Lab, you will be able to:

• Use Forms Built-ins

Lab 6.3: Forms Built-Ins 213

LAB
6.3

go to contents

There are hundreds of built-ins in Oracle Forms, and you will learn and
use many of them throughout the course of this book. In the next few
sections, you will be introduced to some of the more common types of
built-ins. A comprehensive list of all the built-ins and their individual
functions and uses is provided by the Forms help system.

GET_ BUILT-INS
There are a number of built-ins that are prefixed with the word “GET_”.
You used the GET_APPLICATION_PROPERTY in Lab 6.1 to get the user’s
name and assign it to the CREATED_BY and MODIFIED_BY items. The
code looked like this:

:COURSE.CREATED_BY := GET_APPLICATION_PROPERTY(USERNAME);

This specific built-in is used to get information about the application.
There are other GET_ built-ins that you can use to get properties about
other Forms objects such as items, blocks, canvases, and so on. It is also
possible, and quite common, to assign the results of a GET_ built-in to a
variable.

� FOR EXAMPLE:
If you wanted to assign the user name to a variable called v_username,
the code would look like this:

DECLARE
v_user_name VARCHAR2(50);

BEGIN
v_user_name := GET_APPLICATION_PROPERTY(USERNAME);

END;

SET_ BUILT-INS
There is another group of built-ins that are prefixed with the word
“SET_”. As you can imagine, you use them to set certain values.

� FOR EXAMPLE:
You can use the SET_BLOCK_PROPERTY built-in to set properties about a
block at run-time. The following two statements set the ORDER BY clause
and the WHERE clause for a block called SECTION:

214 Lab 6.3: Forms Built-Ins

LAB
6.3

go to contents

SET_BLOCK_PROPERTY('SECTION',DEFAULT_WHERE,'INSTRUCTOR_ID=101');
SET_BLOCK_PROPERTY('SECTION', ORDER_BY, 'SECTION_ID);

The SET_ built-ins are accepting three parameters: the name of the object
to be adjusted, the name of the property to be set, and the value to give
that property. There are SET_ built-ins for other objects in Forms, like
windows, items, canvases, and so on.

FIND_ BUILT-INS
In both cases above, you used the SECTION objects’ name in the SET_
statements. While this is correct, it is slightly inefficient since Forms must
use resources to look up the object by name. Every object in Forms is as-
signed a unique object ID at run-time. Since you are referring to the SEC-
TION block more than once, it is better to refer to it by its ID in the
built-ins so that Forms can look up the object more efficiently. To get an
object’s ID, you must use one of the FIND_ built-ins. In this case, since
you are working with a block, you would use the FIND_BLOCK built-in.
You would use it to find the ID of SECTION, and then use that ID in the
subsequent SET_ statements. The code would look like this:

DECLARE
v_block_id BLOCK;

BEGIN
v_block_id := FIND_BLOCK('SECTION');
SET_BLOCK_PROPERTY(v_block_id, DEFAULT_WHERE,

'INSTRUCTOR_ID = 101');
SET_BLOCK_PROPERTY(v_block_id, ORDER_BY,

'SECTION_ID');
END;

The variable v_block_id is used to hold the result of the FIND_BLOCK
built-in. Then, v_block_id is used in the subsequent SET_ statements to
identify the object. Now, the SECTION object is only referenced by name
once, in the FIND_BLOCK statement. The SET_ statements use the object
ID for the SECTION block, which makes the code much more efficient.

Lab 6.3: Forms Built-Ins 215

LAB
6.3

go to contents

LAB
6.3

LAB 6.3 EXERCISES

6.3.1 USE FORMS BUILT-INS

In this Exercise, you will use built-ins to manipulate the properties of a window
at run-time.

Open the form EX06_03.fmb in the Form Builder. Create a WHEN-NEW-
FORM-INSTANCE trigger at the form level.

a) How can you use the GET_APPLICATION_PROPERTY built-in
to get the name of the current form module?

b) What built-in can you use to size the window MAINWIN to 200,
200? Try to do this using only one built-in statement.

c) How can you use the same built-in from Question b to set the
title for MAINWIN? The title should be as follows:

'This is form... <FORM NAME> '

At the end of the title, you should insert the result of the GET_AP-
PLICATION_PROPERTY built-in from Question a.

Run the form and test the built-ins.

d) What can you do to refer to MAINWIN more efficiently than by
using its object name? Change the code in the WHEN-NEW-FORM-
INSTANCE trigger to do this.

216 Lab 6.3: Forms Built-Ins

go to contents

e) Would this trigger fire properly if MAINWIN did not exist?

Create a PRE-RECORD trigger for the ZIPCODE block and give it the follow-
ing code:

GO_ITEM('ZIPCODE.CITY');

Run the form and issue a query.

f) What was the error you received in the hint line?

LAB 6.3 EXERCISE ANSWERS

6.3.1 ANSWERS

a) How can you use the GET_APPLICATION_PROPERTY built-in to get the
name of the current form module?

Answer: See the discussion below.

GET_APPLICATION_PROPERTY is a built-in function that returns a value,
so in this case, its result should be assigned to a variable as is shown in
the code below:

DECLARE
v_form_name VARCHAR2(50);

BEGIN
v_form_name := GET_APPLICATION_PROPERTY(CURRENT_FORM_NAME);

END;

There are many GET_ built-ins that allow you to get properties for objects
or information from the system. You can use GET_ITEM_PROPERTY,
GET_CANVAS_PROPERTY, and GET_BLOCK_PROPERTY as well to find the
current value of a property and then act on it. In this Exercise, you will

Lab 6.3: Forms Built-Ins 217

LAB
6.3

go to contents

get the current form name property for the application item and then
display it to the user in the window’s title. In the last Exercise, you used
the GET_APPLICATION_PROPERTY to get the current user name and in-
sert it into the database.

Note that the v_form_name variable is a VARCHAR2. This corresponds
with the data type of the value that the GET_APPLICATION_PROPERTY
returns. The built-in would have failed if you had set v_form_name to
NUMBER, BOOLEAN, or another data type. This applies to all built-ins
that accept and return values; you must always be conscious of the data
type that the built-in is using so that you can write your code accord-
ingly. You may have noticed that when you read about the GET_APPLI-
CATION_PROPERTY built-in in the help system, there was information
about the parameters the built-in accepts and the data types it returns.
This type of information is available for all built-ins.

b) What built-in can you use to size the window MAINWIN to 200, 200? Try to
do this using only one built-in statement.

Answer: See the discussion below.

You could have used the following built-in:

SET_WINDOW_PROPERTY('MAINWIN', WINDOW_SIZE, 200, 200);

The SET_ built-ins are similar to the GET_ built-ins in that you can SET_
properties for most Forms objects. You can use SET_ITEM_PROPERTY,
SET_CANVAS_PROPERTY, SET_BLOCK_PROPERTY, and many others to set
the value of a property.

Note that in the SET_WINDOW_PROPERTY example, the same rules regard-
ing data types of values apply. The syntax for the built-in is as follows:

SET_WINDOW_PROPERTY(object name, property, value);

The object name accepts a VARCHAR2 parameter, so the value must be in
quotes. The value in the example above was a NUMBER since you were
setting the size of the window. However, the data type of the value can
change depending on the type of property you are setting. In the next ex-
ample, you will set the title of the window, which will require that you
pass the built-in a VARCHAR2 value. What this discussion illustrates is
that when you begin to use built-ins, it is important that you consult the

218 Lab 6.3: Forms Built-Ins

LAB
6.3

go to contents

help files often to confirm that you are using the proper syntax and that
you are passing parameters using the proper data types.

c) How can you use the same built-in from Question b to set the title for MAIN-
WIN? The title should be as follows:

'This is form . . . <FORM NAME>'

At the end of the title, you should insert the result of the GET_
APPLICATION_PROPERTY built-in from Question a.

Answer: See the discussion below.

Again, you would use the SET_WINDOW_PROPERTY to set the title. This
statement would be as follows:

SET_WINDOW_PROPERTY('MAINWIN',TITLE,'Thisisform'||v_form_name);

The syntax is the same as in the SET_WINDOW_PROPERTY statement that
you used to set the window size. What is different are the values that you
are passing to the built-in.

Note that you passed the v_form_name variable into the built-in. This is
very common in that it keeps you from hard-coding values into the built-in.

Run the form and test the built-ins.

d) What can you do to refer to MAINWIN more efficiently than by using its object
name? Change the code in the WHEN-NEW-FORM-INSTANCE trigger to do this.

Answer: You can refer to it by object ID using the FIND_WINDOW built-in.

The FIND_WINDOW built-in will get the window’s object ID for you. Then
you can use the item ID in the SET_ built-ins instead of the item name.
As you learned in the Lab text, it takes fewer resources to refer to an ob-
ject by its ID than to refer to it by name, so whenever possible, it is more
efficient to refer to an object by its ID.

Just like GET_ and SET_, there are FIND_ built-ins for virtually every ob-
ject in Forms, all of which will return an object’s system ID. To use the
FIND_ built-ins, you must employ variables of specific types.

� FOR EXAMPLE:
When you declare a variable to hold the system ID of a block, the vari-
able must be of type BLOCK. So, if you want to FIND_ the ID of the ZIP-

Lab 6.3: Forms Built-Ins 219

LAB
6.3

go to contents

CODE block and assign it to a variable called v_block_id, the code would
look like this:

DECLARE
v_block_id BLOCK;

BEGIN
v_block_id := FIND_BLOCK('ZIPCODE');

…

Variables to hold the IDs of items would be of type ITEM, blocks of type
BLOCK, and so on.

The code in the WHEN-NEW-FORMS-INSTANCE trigger should look like
this:

DECLARE
v_form_name VARCHAR2(50);
v_window_id WINDOW;

BEGIN
v_form_name := GET_APPLICATION_PROPERTY(CURRENT_FORM_NAME);
v_window_id := FIND_WINDOW('MAINWIN');
SET_WINDOW_PROPERTY(v_window_id, WINDOW_SIZE, 200, 200);
SET_WINDOW_PROPERTY(v_window_id, TITLE, 'This is form

'||v_form_name);
END;

Note that a new variable called v_window_id has been created to hold
MAINWIN’s object ID. v_window_id is set using the FIND_WINDOW built-
in. Then, the SET_ statement’s v_window_id is used to refer to the win-
dow instead of its name. Note that the v_window_id variable is not in
single quotes in the built-in statements.

e) Would this trigger fire properly if MAINWIN did not exist?

Answer: No it would not.

The FIND_WINDOW built-in accepts the MAINWIN window object’s name. If
this window did not exist in the form, you would see the following error
when the trigger tried to fire:

FRM-41052 Cannot find window. Invalid id.

This type of error is not limited to the FIND_WINDOW built-in. You would
receive similar errors if any built-in tried to refer to an object that did not

220 Lab 6.3: Forms Built-Ins

LAB
6.3

go to contents

exist in the form. To guard against this, it is wise to write the trigger so
that it can alert you or the user to the absence of an object.

� FOR EXAMPLE:

DECLARE
v_form_name VARCHAR2(50);
v_window_id WINDOW;

BEGIN
v_form_name := GET_APPLICATION_PROPERTY(CURRENT_FORM_NAME);
v_window_id := FIND_WINDOW('MAINWIN');
IF ID_NULL(v_window_id) THEN

MESSAGE('MAINWIN doesnotexist.ErrorinWHEN-NEW-FORM-INSTANCE trigger');
RAISE FORM_TRIGGER_FAILURE;
END IF;
SET_WINDOW_PROPERTY(v_window_id, WINDOW_SIZE, 200, 200);

SET_WINDOW_PROPERTY(v_window_id,TITLE,'Thisisform'||v_form_name);
END;

The ID_NULL built-in evaluates whether or not the value v_window_id is
null. If it is null, it means the MAINWIN window does not exist.

Create a PRE-RECORD trigger for the ZIPCODE block and give it the fol-
lowing code:

GO_ITEM('ZIPCODE.CITY');

Run the form and issue a query.

f) What was the error you received in the hint line?

Built-ins that have to do with navigation are deemed restricted. That is, they cannot be
used in Navigational triggers. The PRE-RECORD trigger is a Navigational trigger, as
is PRE-TEXT-ITEM, POST-BLOCK, POST-QUERY, and many others. You are
unable to use restricted built-ins like GO_ITEM, GO_BLOCK, and so on in these trig-
gers. As you have already seen, the help system will indicate whether a built-in is re-
stricted or not under the “Built-in Type” heading. The help for triggers will also indicate
what types of built-ins they can include under the “Legal Commands” heading.

Lab 6.3: Forms Built-Ins 221

LAB
6.3

go to contents

LAB 6.3 SELF REVIEW QUESTIONS

In order to test your progress, you should be able to answer the following questions:

1) Which of the following is true about built-ins?
a) ____ They are not valid in triggers
b) ____ They fire at will
c) ____ They are PL/SQL functions and procedures that provide standard

application functionality
d) ____ None of the above

2) What is true about the EXIT_FORM built-in?
a) ____ You can pass it parameters
b) ____ It gets a form out of Enter Query mode
c) ____ It is not valid in WHEN-BUTTON-PRESSED triggers
d) ____ a & b

3) Which built-in would you use to find the width of an item?
a) ____ FIND_ITEM_PROPERTY
b) ____ GET_APPLICATION_PROPERTY
c) ____ GET_ITEM_PROPERTY
d) ____ a & c

4) Which parameters can SET_ITEM_PROPERTY accept?
a) ____ Item names
b) ____ Object IDs
c) ____ Property names
d) ____ All of the above

5) Which of the following cannot be used in the SET_ITEM_PROPERTY built-in?
a) ____ Variables as parameters
b) ____ The :BLOCK.ITEM syntax
c) ____ The Prompt property
d) ____ Non-navigable items

6) What could you use to get an object’s ID?
a) ____ A GET_ statement
b) ____ A system variable
c) ____ A FIND_ built-in
d) ____ a & c

Quiz answers appear in Appendix A, Section, 6.3.

222 Lab 6.3: Forms Built-Ins

LAB
6.3

C H A P T E R 6

TEST YOUR THINKING
1) Open the R_STUDENT.fmb form that you created in the “Test Your Thinking”

section of Chapter 2 to complete this question. Add two display items called
CITY and STATE to the form. Populate these display items with a POST-QUERY
trigger. Validate STUDENT.ZIPCODE with a WHEN-VALIDATE-ITEM trigger.

2) Open the R_INSTRUCTOR.fmb form that you created in the “Test Your Think-
ing” section of Chapter 2 to complete this question. Add two display items called
CITY and STATE to the form. Populate these display items with a POST-QUERY
trigger. Validate INSTRUCTOR.ZIPCODE with a WHEN-VALIDATE-ITEM trig-
ger.

3) Open the R_CRSESECT.fmb form you created in the “Test Your Thinking” sec-
tion of Chapter 4 to complete this question. Add one display item to the SEC-
TION block for the INSTRUCTOR_NAME. Populate this display item with a
POST-QUERY trigger. The INSTRUCTOR_NAME item should contain both the
FIRST_NAME and LAST_NAME of the instructor. The name should appear as fol-
lows:

Joe Smith

Validate INSTRUCTOR_ID with a WHEN-VALIDATE-ITEM trigger.

4) Open the R_STUDENRL.fmb form you created in the “Test Your Thinking” sec-
tion of Chapter 4 to complete this question. Add two display items to the EN-
ROLLMENT block: one for the COURSE_NO of the course, and one for the
LOCATION of the course. Populate these display items with a POST-QUERY trig-
ger.

Validate SECTION_ID with WHEN-VALIDATE-ITEM triggers.

Chapter 6: Test Your Thinking 223

go to contents

	Lab 6.1: Trigger Basics
	Lab 6.1 Exercises
	6.1.1 Use PL/SQL and SQL in Triggers
	6.1.2 Understand Trigger Scope
	6.1.3 Categorize Triggers

	Lab 6.1 Exercise Answers
	6.1.1 Answers
	6.1.2 Answers
	6.1.3 Answers

	Lab 6.1 Self-Review Questions

	Lab 6.2: Creating Triggers of Various Types
	Lab 6.2 Exercises
	6.2.1 Create Query Triggers
	6.2.2 Create Validation Triggers
	6.2.3 Create Transactional Triggers
	6.2.4 Create Key Triggers

	Lab 6.2 Answers
	6.2.1 Answers
	6.2.2 Answers
	6.2.3 Answers
	6.2.4 Answers

	Lab 6.2 Self-Review Questions

	Lab 6.3: Forms Built-Ins
	Lab 6.3 Exercises
	6.3.1 Use Forms Built-Ins

	Lab 6.3 Exercise Answers
	6.3.1 Answers

	Lab 6.3 Self-Review Questions

	Test Your Thinking

